A fast algorithm for modeling multiple bubbles dynamics
نویسندگان
چکیده
This work presents the development of a numerical strategy that combines the fast Fourier transform on multipoles (FFTM) method and the boundary element method (BEM) to study the physics of multiple bubbles dynamics in moving boundary problems. The recent FFTM method can be employed to speedup the resolution of the boundary integral equation. However, one major drawback of the method is that its efficiency deteriorates quite significantly when the problem is spatially sparsely populated, as in the case where multiple bubbles are well separated. To overcome this deficiency, a new version of FFTM with clustering is proposed (henceforth called FFTM Clustering). The new algorithm first identifies and groups closely positioned bubbles. The original FFTM is then used to compute the potential contributions from the bubbles within its own group, while contributions from the other separated groups are evaluated via the multipole to local expansions translations operations directly. We tested the FFTM Clustering on several multiple bubble examples to demonstrate its effectiveness over the original FFTM method and vast improvement over the standard BEM. The high efficiency of the FFTM Clustering method allows us to simulate much larger multiple bubbles dynamics problems within reasonable time. Some physical behaviors of the multiple bubbles are also presented in this work. 2005 Elsevier Inc. All rights reserved.
منابع مشابه
همکاری رباتها در جابجایی جسم نامعین توسط کنترلر امپدانسچندگانه
Parameter identification techniques are particularly attractive to determine the inertial parameters of robot manipulators and manipulated payloads. These parameters are particularly needed in implementation of a model-based controller for robot manipulators. In this paper, the inertial parameters of a manipulated rigid-body object have been estimated. The Newton-Euler equations will be employe...
متن کاملHarmonics Estimation in Power Systems using a Fast Hybrid Algorithm
In this paper a novel hybrid algorithm for harmonics estimation in power systems is proposed. The estimation of the harmonic components is a nonlinear problem due to the nonlinearity of phase of sinusoids in distorted waveforms. Most researchers implemented nonlinear methods to extract the harmonic parameters. However, nonlinear methods for amplitude estimation increase time of convergence. Hen...
متن کاملComputational fluid dynamics study and GA modeling approach of the bend angle effect on thermal-hydraulic characteristics in zigzag channels
In the study, the thermal-hydraulic performance of the zigzag channels with circular cross-section was analyzed by Computational Fluid Dynamics (CFD). The standard K-Ꜫ turbulent scalable wall functions were used for modeling. The wall temperature was assumed constant 353 K and water was used as the working fluid. The zigzag serpentine channels with bend angles of 5 - 45° were studied for turbul...
متن کاملHydrodynamic investigation of multiple rising bubbles using lattice Boltzmann method
Hydrodynamics of multiple rising bubbles as a fundamental two-phase phenomenon is studied numerically by lattice Boltzmann method and using Lee two-phase model. Lee model based on Cahn-Hilliard diffuse interface approach uses potential form of intermolecular forces and isotropic finite difference discretization. This approach is able to avoid parasitic currents and leads to a stable procedure t...
متن کاملA New Control Strategy for Controlling Isolated Microgrid
Microgrid control in isolated mode is a highly important subject area. In the present paper, a new method is used for controlling the isolated microgrids. This method was used based on the classification of the microgrids into two groups, namely fast-dynamic (battery and flywheel) and slow-dynamic (diesel generator, electrolyzer, fuel cell). For the microgrid components with fast dynamics, a se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 216 شماره
صفحات -
تاریخ انتشار 2006